424 research outputs found

    Extension of HPL to complex arguments

    Full text link
    In this paper we describe the extension of the Mathematica package HPL to treat harmonic polylogarithms of complex arguments. The harmonic polylogarithms have been introduced by Remiddi and Vermaseren and have many applications in high energy particle physics.Comment: 42 pages, references added, the package can be downloaded at http://krone.physik.unizh.ch/~maitreda/HPL

    NLO high multiplicity processes

    Get PDF
    In this presentation some aspects of Next-to-Leading Order (NLO) calculations in QCD are presented. The focus is brought to aspects of such calculations for processes involving a high final-state particle multiplicity

    High multiplicity W+jets predictions at NLO

    Full text link
    In these proceedings we present results from a recent calculation for the production of a W boson in conjunction with five jets at next-to-leading order in perturbative QCD. We also use results at lower multiplicities to extrapolate the cross section to the same process with six jets.Comment: 5 pages, Proceedings for the DIS2013 conferenc

    HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters

    Full text link
    We present the Mathematica package HypExp which allows to expand hypergeometric functions JFJ1_JF_{J-1} around integer parameters to arbitrary order. At this, we apply two methods, the first one being based on an integral representation, the second one on the nested sums approach. The expansion works for both symbolic argument zz and unit argument. We also implemented new classes of integrals that appear in the first method and that are, in part, yet unknown to Mathematica.Comment: 33 pages, latex, 2 figures, the package can be downloaded from http://krone.physik.unizh.ch/~maitreda/HypExp/, minor changes, works now under Window

    Master Integrals for Fermionic Contributions to Massless Three-Loop Form Factors

    Get PDF
    In this letter we continue the calculation of master integrals for massless three-loop form factors by giving analytical results for those integrals which are relevant for the fermionic contributions proportional to N_F^2, N_F*N, and N_F/N. Working in dimensional regularisation, we express one of the integrals in a closed form which is exact to all orders in epsilon, containing Gamma-functions and hypergeometric functions of unit argument. In all other cases we derive multiple Mellin-Barnes representations from which the coefficients of the Laurent expansion in epsilon are extracted in an analytical form. To obtain the finite part of the three-loop quark and gluon form factors, all coefficients through transcendentality six in the Riemann zeta-function have to be included.Comment: 12 pages, 1 figure. References added and updated. Appendix on evaluation of Mellin-Barnes integrals added. Version to appear in PL

    Application of the Principle of Maximum Conformality to Top-Pair Production

    Full text link
    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale μr\mu_r. For example, by using the conventional way of setting μr[mt/2,2mt]\mu_r \in [m_t/2,2m_t], one obtains the total ttˉt \bar{t} production cross-section σttˉ\sigma_{t \bar{t}} with the uncertainty \Delta \sigma_{t \bar{t}}/\sigma_{t \bar{t}}\sim ({}^{+3%}_{-4%}) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. In this paper we apply PMC scale-setting to predict the ttˉt \bar t cross-section σttˉ\sigma_{t\bar{t}} at the Tevatron and LHC colliders. It is found that σttˉ\sigma_{t\bar{t}} remains almost unchanged by varying μrinit\mu^{\rm init}_r within the region of [mt/4,4mt][m_t/4,4m_t]. The convergence of the expansion series is greatly improved. For the (qqˉ)(q\bar{q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small xx-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)(gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy s\sqrt{s}, but it is still smaller than mtm_t for s1\sqrt{s}\lesssim 1 TeV, and the resulting NLO cross-section is increased by 20\sim 20%. As a result, a larger σttˉ\sigma_{t\bar{t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting mt=172.9±1.1m_t=172.9\pm 1.1 GeV, we predict σTevatron,  1.96TeV=7.6260.257+0.265\sigma_{\rm Tevatron,\;1.96\,TeV} = 7.626^{+0.265}_{-0.257} pb, σLHC,  7TeV=171.85.6+5.8\sigma_{\rm LHC,\;7\,TeV} = 171.8^{+5.8}_{-5.6} pb and σLHC,  14TeV=941.326.5+28.4\sigma_{\rm LHC,\;14\,TeV} = 941.3^{+28.4}_{-26.5} pb. [full abstract can be found in the paper.]Comment: 15 pages, 11 figures, 5 tables. Fig.(9) is correcte

    Electron Entanglement via a Quantum Dot

    Get PDF
    This Letter presents a method of electron entanglement generation. The system under consideration is a single-level quantum dot with one input and two output leads. The leads are arranged such that the dot is empty, single electron tunneling is suppressed by energy conservation, and two-electron virtual co-tunneling is allowed. This yields a pure, non-local spin-singlet state at the output leads. Coulomb interaction is the nonlinearity essential for entanglement generation, and, in its absence, the singlet state vanishes. This type of electron entanglement is a four-wave mixing process analogous to the photon entanglement generated by a Chi-3 parametric amplifier.Comment: 4 page

    Cyclical Quantum Memory for Photonic Qubits

    Get PDF
    We have performed a proof-of-principle experiment in which qubits encoded in the polarization states of single-photons from a parametric down-conversion source were coherently stored and read-out from a quantum memory device. The memory device utilized a simple free-space storage loop, providing a cyclical read-out that could be synchronized with the cycle time of a quantum computer. The coherence of the photonic qubits was maintained during switching operations by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure

    Symmetric qubits from cavity states

    Full text link
    Two-mode cavities can be prepared in quantum states which represent symmetric multi-qubit states. However, the qubits are impossible to address individually and as such cannot be independently measured or otherwise manipulated. We propose two related schemes to coherently transfer the qubits which the cavity state represents onto individual atoms, so that the qubits can then be processed individually. In particular, our scheme can be combined with the quantum cloning scheme of Simon and coworkers [C. Simon et al, PRL 84, 2993 (2000)] to allow the optimal clones which their scheme produces to be spatially separated and individually utilized.Comment: 8 pages, 4 figures, minor typographical errors correcte

    Spin Asymmetries in Squark and Gluino Production at Polarized Hadron Colliders

    Full text link
    We study the production cross sections for squarks and gluinos in collision of longitudinally polarized hadrons. The corresponding polarized partonic cross sections are computed in leading order supersymmetric QCD. The resulting asymmetries are evaluated for the polarized proton collider RHIC, as well as for hypothetical polarized options of the Tevatron and the LHC. These asymmetries turn out to be sizable over a wide range of supersymmetric particle masses, thus potentially opening a window to detailed sparticle spectroscopy at future polarized hadron colliders.Comment: 25 pages, LaTeX, typos correcte
    corecore